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Fixation Prediction through Multimodal Analysis

XIONGKUO MIN, GUANGTAO ZHAI, KE GU, and XIAOKANG YANG,
Shanghai Jiao Tong University

In this article, we propose to predict human eye fixation through incorporating both audio and visual cues.
Traditional visual attention models generally make the utmost of stimuli’s visual features, yet they bypass
all audio information. In the real world, however, we not only direct our gaze according to visual saliency, but
also are attracted by salient audio cues. Psychological experiments show that audio has an influence on visual
attention, and subjects tend to be attracted by the sound sources. Therefore, we propose fusing both audio and
visual information to predict eye fixation. In our proposed framework, we first localize the moving–sound-
generating objects through multimodal analysis and generate an audio attention map. Then, we calculate
the spatial and temporal attention maps using the visual modality. Finally, the audio, spatial, and temporal
attention maps are fused to generate the final audiovisual saliency map. The proposed method is applicable
to scenes containing moving–sound-generating objects. We gather a set of video sequences and collect eye-
tracking data under an audiovisual test condition. Experiment results show that we can achieve better eye
fixation prediction performance when taking both audio and visual cues into consideration, especially in
some typical scenes in which object motion and audio are highly correlated.
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1. INTRODUCTION

Visual attention has long served as an important research topic in areas of psychology,
image processing, and computer vision. Predicting where humans look can be of great
use in numerous applications, such as image-quality assessment [Ninassi et al. 2007],
video coding [Itti 2004], and automatic contrast enhancement [Gu et al. 2015b]. In
recent years, many visual attention computational models have been developed [Borji
and Itti 2013; Borji et al. 2014]. Most models utilize low-level visual features, such
as intensity, color, and orientation [Itti et al. 1998; Harel et al. 2006], to highlight
positions that are distinctly different from their surroundings. Some models also take
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some high-level cognitive visual features into account, for example, using face [Cerf
et al. 2008], text [Cerf et al. 2009], and person detectors [Judd et al. 2009]. For dynamic
scenes, many models also consider motion features [Guo et al. 2008; Seo and Milanfar
2009; Kim et al. 2015].

In spite of various kinds of features used to model visual attention, almost all of
these features used are visual based, and almost all visual-attention models leave
audio information aside. Existing visual-attention databases are mostly built under
the visual test condition in which subjects hear no audio, whereas some psychological
works have shown that audio does have some impact on visual attention [Perrott et al.
1990; Vroomen and Gelder 2000; Coutrot and Guyader 2013; Song et al. 2013; Min et al.
2014]. In an early study, Perrott et al. [1990] showed that sound can guide attention to a
visual target when auditory and visual signals came from the same position. Vroomen
and Gelder [2000] demonstrated that concurrent auditory stimuli can enhance visual
perception. Bao and Roy Choudhury [2010] used audio and sensory cues to identify
temporal segment boundaries of important events in social videos.

In addition to traditional psychological experiments, the influence of sound was fur-
ther verified through eye-tracking experiments [Coutrot and Guyader 2013; Song et al.
2013; Min et al. 2014]. Coutrot and Guyader [2013] investigated how sound impacted
eye movements by controlling contents of the scenes. They found that sound influenced
eye movements significantly only in videos containing faces and several moving objects.
Song et al. [2013] found that the effect of sound was different depending on the sound
types. They classified sound into various kinds, such as human voice, action, and mu-
sic. Particular types of sound guided human eyes to the sound source, and the human
voice showed the greatest impact on visual attention. In a preliminary work [Min et al.
2014], we demonstrated that the impact of audio was up to its consistency with visual
signals. If the sound source was not the most visually salient object, subjects would be
attracted by the sound sources to a certain degree. For example, in conversation scenes,
subjects tended to focus more on the speaking person.

Although plenty of psychological works have verified the influence of audio on visual
attention, few efforts have been devoted to applying those findings to visual attention
modeling. Thus, in this work, we concentrate on constructing audiovisual attention
models to predict eye fixation in video sequences. Based on the finding that audio af-
fects visual attention in some circumstances and that sound sources are strong cues
for visual attention in such scenes [Coutrot and Guyader 2013; Song et al. 2013; Min
et al. 2014], we try to model visual attention from both audio and visual perspec-
tives. A framework of our approach is illustrated in Figure 1. Like traditional saliency
models, the spatial and temporal visual attention maps are calculated directly from
the video stream. Spatial attention maps are calculated from single video frames us-
ing state-of-the-art image saliency algorithms. As demonstrated in Yantis and Jonides
[1990], object motion can attract visual attention. In this work, we compute optical
flows from adjacent frames to describe video sequences’ motion characteristics, and
the magnitudes of forward optical flows are taken as the temporal attention maps.
For the audio, we attempt to localize the moving–sound-generating objects through
multimodal analysis [Izadinia et al. 2013]. The localization result is taken as our
audio attention map. Finally, the audio and visual attention maps are fused as the
final audiovisual saliency map. The proposed method is applicable to scenes containing
moving–sound-generating objects. In such scenes, it is feasible to localize and highlight
the moving–sound-generating objects.

With the help of the sound source localization method [Izadinia et al. 2013], we can
predict eye fixations better in scenes containing moving–sound-generating objects. A
typical scene is that there are several moving objects, but only one is generating the
sound. In such scenes, the influence of the sound is obvious, and it is also possible to
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Fig. 1. Framework of the audio-visual attention model. The spatial and temporal visual attention maps are
calculated directly from the video stream. The audio attention map are derived from the results of a sound
source localization method.

localize the moving–sound-generating object. Scenes of this kind are also very common
in our daily life. Note that the adopted and other state-of-the-art sound source local-
ization approaches [Barzelay and Schechner 2007; Kidron et al. 2007; Izadinia et al.
2013; Li et al. 2014] can only work in scenes in which the object motion and sound are
highly correlated, that is, the sound is generated by the object motion, whereas in other
scenes in which the object motion and the sound are weakly correlated or uncorrelated,
the localization methods are noneffective. Thus, our multimodal saliency models are
also not effective in such scenes, for example, in videos containing background music
or working loudspeakers.

The remainder of this article is organized as follows. In Section 2, we briefly review
the related work. Section 3 describes in detail how to model audiovisual attention. In
Section 4, we present the eye-tracking experiment. The effectiveness of the presented
audiovisual attention model is also verified in this section. We present our conclusions
in Section 5.

2. RELATED WORK

In this section, we briefly review some related works. First, we discuss the moving–
sound-generating object localization methods. Then, we briefly discuss visual attention
models. Finally, the important visual models that incorporate audio cues are reviewed.
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2.1. Moving–sound-generating Object Localization

The key problem of audio attention modeling is to localize the moving–sound-
generating objects in a video sequence. In a three-dimensional space, we can localize
the sound source according to the small time discrimination of the sound’s arrival at
our ears [Jeffress 1948]. Minotto et al. [2014] performed voice-activity detection and
sound-source localization for simultaneous speaker scenarios, using a camera and a
microphone array. For video sequences captured using a single microphone, however,
it is much more difficult to localize the sound source. Some researchers made attempts
in such circumstances [Barzelay and Schechner 2007; Kidron et al. 2007; Izadinia
et al. 2013; Li et al. 2014]. These methods were based on the premise that multimodal
data originating from one source were highly correlated. Thus, auditory and visual
data of the same video sequence could be used to localize visual events that generated
the sound. Methods in Barzelay and Schechner [2007] and Kidron et al. [2007] were
pixel-level localization. In Barzelay and Schechner [2007], audio and visual onsets
were used to characterize each modality. Then, a coincidence-based measure was used
to associate the visual and audio events. Kidron et al. [2007] employed a Canonical
Correlation Analysis (CCA) method to perform cross-modal analysis.

To overcome the limitations of pixel-level analysis, some methods [Izadinia et al.
2013; Li et al. 2014] adopted object-level localization, in which correlation-after-
segmentation methods were used. The authors first segmented the entire video se-
quence into a number of spatial-temporal regions (STRs). Then, visual features were
extracted to represent each STR. The localization problem was reduced to detecting the
STRs whose visual features were most correlated to the video sequence’s audio features.
We apply a localization approach similar to Izadinia et al. [2013], but with some mod-
ifications to make it more appropriate for our purpose of generating audio-attention
maps. The original video segmentation process is replaced with a state-of-the-art video
segmentation approach, and the final localized results are further modified. The local-
ization results that highlight the sound sources are treated as audio-attention maps.

2.2. Visual-Attention Model

After decades of development, dozens of visual-attention models are available now.
According to some recent review articles [Borji and Itti 2013; Borji et al. 2014], the
research of visual-attention modelling can be classified into 3 closely related areas:
fixation prediction, salient-object detection and object-proposal generation. Most early
studies aim at fixation prediction [Itti et al. 1998; Harel et al. 2006; Zhang et al.
2008; Hou and Zhang 2007, 2009; Guo et al. 2008; Cerf et al. 2008; Seo and Milanfar
2009; Judd et al. 2009]. Models of this kind are developed to predict the positions of
the human gaze. Eye-tracking data collected under a free-viewing condition is used
to evaluate such models. Later, driven by saliency-based applications, salient-object
detection models were proposed [Zhai and Shah 2006; Achanta et al. 2009; Cheng
et al. 2011]. Models of this kind try to detect the most salient object as a whole. The
generated saliency maps are used to segment the salient objects. More recently, some
models have been introduced to generate object proposal [Cheng et al. 2014; Alexe et al.
2012]. The purpose is to generate a group of object regions to cover all objects in the
scene. Human labeled data are used as the ground truth for the later two kinds of
models. In this article, we mainly focus on the fixation prediction model, which is the
most widely investigated and used type in the research community.

2.3. Visual-Attention Model Incorporating Audio Cues

As previously discussed in the introduction section, fixation-prediction models gener-
ally make the most of various low- or high-level visual features to highlight the most
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distinctive positions. The extracted features are mostly visual based. Concerning the
impact of audio, plenty of psychological studies have verified the influence of audio
on visual attention, but few efforts have been devoted to applying those findings to
visual-attention modeling. Several researchers have made attempts at constructing
audiovisual-attention models [Ma et al. 2005; Evangelopoulos et al. 2013; Chen et al.
2014; Lee et al. 2011; Coutrot and Guyader 2014].

Ma et al. [2005] propose a user attention model that combines multiple sensory per-
ceptions such as visual, audio stimulus, and some semantic understanding. The pro-
posed model was successfully used in video summarization, which extracts important
video content. Similarly, Evangelopoulos et al. [2013] fuse aural, visual, and textual
attention for movie summarization. The goal of this attention model is to generate an
attention curve along the time axis. High value indicates that the video content in
the current moment is important. Audio is a rather important type of feature in these
kinds of attention models. It is out the scope of this article since we are interested in
predicting eye movement.

Chen et al. [2014] captured eye-tracking data for a set of image–audio pairs. Ex-
periments showed that coherent audio information helped to enhance the saliency of
the corresponding visual target. A framework was also proposed to predict eye fixation
in scenes of image viewing with the influence of different audio. Their work is based
on audio classification and visual object detection, which relies on training, and only
a specific number of audio and object types were trained. Lee et al. [2011] present
a foveated video coding method using audiovisual focus of attention. They localized
and treated the sound source region as the most visually salient part of the video
sequence. Then, the foveated video coding method assigned different quality levels to
video frames according to the distance from a pixel to the localized sound source. In this
method, they treated the sound source as the most salient location of the video. This
method is not comprehensive since audio attention often integrates or competes with
visual attention in the realistic scenes. We should also consider visual attention. In
addition to general scenes, conversation scenes are specifically investigated in Coutrot
and Guyader [2014]. They propose an audiovisual saliency model for natural conversa-
tion scenes based on the fact that the speaking faces were generally much more salient
compared with others. Through increasing the saliency of the speakers, the proposed
audiovisual saliency model performed better than visual attention models in which all
faces were fairly treated.

In contrast to the aforementioned works, which are devoted only to specific scenes,
such as image–audio pairs [Chen et al. 2014] or conversation scenes [Coutrot and
Guyader 2014], our framework is less restrictive to video content. Compared with
Lee et al. [2011], our method is more reasonable since we take both audio and visual
attention into account, whereas Lee et al. [2011] treat only the sound source as the
most salient part of the scene.

3. AUDIOVISUAL ATTENTION MODELING

Following the framework illustrated in Figure 1, we first model audio and visual atten-
tion, then audio and visual attention maps are fused to generate the final audiovisual
saliency map. Details of the audiovisual attention modelling process are discussed
later.

3.1. Audio Attention Modeling

As discussed in Section 1, we try to localize the moving-sound-generating objects in
video sequences, and the localization result acts as the audio attention map. In scenes
in which the audio is generated from object motion, we can localize the sound source
since the object’s motion pattern and the audio variation pattern are highly correlated
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Fig. 2. Flow diagram of the moving-sound-generating objects localization method. The whole process can
be divided into 3 parts: visual analysis, audio analysis, and audiovisual correlation.

in such scenes [Izadinia et al. 2013; Li et al. 2014; Kidron et al. 2005]. We adopt the same
correlation-after-segmentation framework as Izadinia et al. [2013]. Figure 2 illustrates
the flow diagram of the localization method used in this article. We first segment the
entire video sequence into a specific number of appearance-motion-coherent STRs.
For each STR, velocity and acceleration derived from optical flow are used as visual
features. Mel-frequency Cepstral Coefficients (MFCCs) and their first-order derivatives
(MFCC Ds) are calculated to represent the audio [Müller 2007]. Finally, CCA [Hardoon
et al. 2004] is utilized to determine the STRs whose visual features have the best
correlation with audio features. Slightly different from Izadinia et al. [2013], we use a
state-of-the-art video segmentation approach [Xu et al. 2012], and we modify the final
localization process to remove suspicious tiny motions.

3.1.1. Visual Analysis. The purpose of visual analysis is to segment the video sequence
into K supervoxels SVk (k = 1, . . . , K is the supervoxel index) and represent each
supervoxel with some motion features. In frame Ft, pixels belonging to SVk can be
denoted as SVk(t) (t = 1, . . . , T is the frame index). We use a graph-based streaming
hierarchical method [Xu et al. 2012] to segment the video sequence. Compared with the
intraframe segmentation and interframe clustering method in Izadinia et al. [2013],
the adopted video segmentation approach [Xu et al. 2012] is more robust and can get
good results in various kinds of scenes. Motion features are velocity and acceleration
derived from optical flows [Liu 2009]:

vel = U+(p, t) (1)
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Fig. 3. Visual features for sound source localization. (a) Frame image Ft, t = 119 in this example. This video
sequence shows an interviewee who is speaking. (b) Supervoxels in the current frame. SVk(t) denotes the face
region supervoxel in Ft. (c) vel, velocity of Ft. (d) acl, acceleration of Ft. (e), (f) Mean velocity/acceleration
magnitude of each supervoxel in Ft. vk1t and vk2t denote velocity and acceleration features of SVk(t).

acl = U+(p, t) − (−U−(p, t)), (2)

where U+(p, t) represents forward optical flow from frame Ft to Ft+1; U−(p, t) represents
backward optical flow from frame Ft to Ft−1; p = (i, j) denotes pixel location. Then,
SVk(t) can be described by the mean velocity and acceleration magnitude of pixels
belong to SVk(t). According to the variances along the time axis, we select the most
dominant m1 supervoxels for velocity and m2 supervoxels for acceleration. Finally, we
can use matrix v to characterize the whole video sequence:

v = (vkt)M×T = [v1, . . . , vT ], (3)

where vkt denotes the visual feature (mean velocity or acceleration magnitude) of SVk(t);
vt, t = 1, . . . , T is an M = m1 + m2 dimension vector that denotes the visual features
of frame Ft. M supervoxels are selected according to the variance of (vk·)1×T . Figure 3
illustrates an example of velocity, acceleration, and corresponding derived visual fea-
tures. SVk indicates the supervoxel of the face region in this example. Then, vk1t and
vk2t denote the velocity and acceleration of SVk(t). Features of other supervoxels are
calculated similarly. Parameters settings will be given in Section 4.2.

3.1.2. Audio Analysis. We assume that the audio signal is dominated by the sound
emitting from the target moving–sound-generating object. We extract N/2 MFCCs and
N/2 first-order derivatives (MFCC Ds) as audio features. Before extracting features,
the audio signal is first framed to have the same number of frames as the video se-
quence. Then, the audio signal can be characterized by matrix a = [a1, . . . , aT ], where
at, t = 1, . . . , T is an N dimension vector used to feature the tth windowed audio signal.
More details about the parameters will be given in Section 4.2.

3.1.3. Audiovisual Correlation. The goal of audiovisual correlation is to detect the super-
voxels, that is, the dimensions of v that maximize its correlation with audio a. Common
correlation methods may suffer from the problem that the video and audio signal are
described in distinctively different fields. CCA is a classic, yet efficient, method that
can perform correlation analysis after project signals of different modality to a common
coordinate system. In our work, CCA seeks pairs of canonical bases wv and wa that
maximize the correlation between projections wT

v v and wT
a a [Hardoon et al. 2004]:

(wv, wa) = arg max
wv,wa

Corr(wT
v v, wT

a a). (4)
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Fig. 4. Results of audiovisual correlation analysis. (a) Frame image. This video sequence presents a singing
man. (b) Supervoxels in the current frame. (c) Correlation map. (d) Motion map. (e) Modified map. (f) Local-
ization result, that is, audio attention map Sa.

Equation(4) has a closed-form solution as an eigenvalue problem:{
C−1

vv CvaC−1
aa Cavwv = ρ2wv

C−1
aa CavC−1

vv Cvawa = ρ2wa
, (5)

where Cvv and Caa denote the covariance matrices of v and a, respectively; Cva is the
cross-covariance matrix of the vectors v and a. Solving Equation (4) is equivalent to
finding the largest eigenvalue (denoted by ρ2

1 ) and corresponding eigenvectors (denoted
by wv1 , wa1 ) in Equation (5). Larger ρ2

1 denotes better correlation between video and
audio. Moreover, in wv1 , the components with higher magnitude values contribute more
to the maximum correlation, that is, maximum eigenvalue ρ2

1 .
We generate a correlation map according to wv1 . Normalized components of wv1

larger than a threshold and corresponding supervoxels are selected as candidates. In
the correlation map, values of all pixels belonging to each candidate supervoxel are set
to corresponding normalized wv1 component value, while others are set to 0. In Izadinia
et al. [2013], the correlation map is generated by assigning value 1 to pixels of all
candidate supervoxels. Our method is more reasonable since better correlation denotes
higher possibility of a position being the sound source. Moreover, our correlation map
is further modified by multiplying a motion map to remove tiny motions. In the motion
map, values of pixels belonging to each supervoxel are set to this supervoxel’s velocity
variance along the time axis. Finally, the modified map is spatiotemporally smoothed
to the final localization result, which is taken as the audio attention map Sa.

Figure 4 illustrates some results of audiovisual correlation analysis. The analysis is
in the supervoxel level. From Figure 4(c), we can see that some supervoxels with tiny
motions sometimes are highly correlated with the audio. Thus, the proposed multipli-
cation operation is essential. The effectiveness of the modification process is evident
from Figure 4(c) and Figure 4(e).

3.2. Visual-Attention Modeling

Since the main purpose of this work is to demonstrate the superiority of audiovisual
attention fusion, we model visual attention using state-of-the-art saliency algorithms.
The performance improvement for different models will be compared. Both image and
video saliency models are considered. Figure 5 demonstrates the framework of visual-
attention modeling and audiovisual attention fusion. For the image-saliency model,
we predict visual attention from both spatial and temporal aspects. Then the spa-
tial, temporal, and audio attention maps are fused. For the video saliency model, the
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Fig. 5. Visual-attention modeling and audiovisual-attention fusion.

spatiotemporal attention maps are directly calculated from the video-saliency models.
The spatiotemporal attention maps are then fused with the audio-attention maps.

3.2.1. Spatial-Attention Modeling. In recent years, dozens of saliency models have
achieved good performances for static images. We choose 15 typical image-saliency
algorithms to model spatial attention: IT [Itti et al. 1998], GBVS [Harel et al. 2006],
SR [Hou and Zhang 2007], SUN [Zhang et al. 2008], PFT [Guo et al. 2008], SMVJ
[Cerf et al. 2008], Hou [Hou and Zhang 2009], SeR [Seo and Milanfar 2009], Judd
[Judd et al. 2009], FT [Achanta et al. 2009], RC [Cheng et al. 2011], BMS [Zhang and
Sclaroff 2013], CovSal [Erdem and Erdem 2013], HFT [Li et al. 2013], and FES [Gu
et al. 2015a]. Most are fixation prediction models, except for FT and RC. These 2 models
were originally developed to detect salient objects. Note that several models take some
middle or high-level features into consideration. For example, GBVS considers center
bias; SMVJ includes a face detector; Judd considers more high-level factors, such as
faces, persons, and cars.

The PFT method can be extended to PQFT [Guo et al. 2008], which considers motion
features and works for video sequences. We consider only PFT in this section. PQFT
will be considered in Section 3.2.3. Similarly, SeR method works for both image and
video sequences [Seo and Milanfar 2009]; we consider only the image version here. The
spatial-attention map is denoted as Ss in following sections.

3.2.2. Temporal-Attention Modeling. Object motion is an important cue for visual atten-
tion. Optical flow is often used to describe the local motion of video sequences [Liu
2009]. For temporal attention, we adopt optical flow–based motion estimation to re-
duce computation since we have calculated optical flow for each frame in the process
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of audio-attention modeling. The temporal attention map St can be calculated by

St = g ∗ ||vel||, (6)

where g is a Gaussian kernel, ∗ is the convolution product operator, and vel is the
velocity acquired by Equation (1).

3.2.3. Spatiotemporal-Attention Modeling. Although most image saliency models work for
video sequences, some researchers make special considerations for video sequences.
Guo et al. [2008] extended their PFT method to PQFT by considering both spatial
and motion features. Seo and Milanfar [2009] proposed a unified framework for both
static and space–time saliency detection. The proposed method calculated saliency
using a “self-resemblance” measure, and it did not require explicit motion estimation
by taking the video sequence as a volume. Kim et al. [2015] recently presented a
method incorporating spatial and temporal features into a random walk with restart
(RWR) framework to detect spatiotemporal saliency (RWRV). All these methods will
be considered and used to detect spatiotemporal-attention maps. The saliency map
computed by video saliency algorithm is denoted as Sst in following contents.

3.3. Audiovisual-Attention Fusion

The last stage is to generate the final audiovisual saliency map by fusing the audio-
and visual-attention maps:

S = f (Ss, St, Sa) or
S = f (Sst, Sa),

(7)

where S is the final audiovisual saliency map; Ss, St, Sst, Sa are spatial-, temporal-,
spatiotemporal-, and audio-attention maps, respectively; and f is the fusion function.
Chamaret et al. [2010] evaluated common spatial and spatiotemporal fusion strategies.
In this work, we test the following 3 classical and most commonly used fusion methods:

—Normalization and summation (NS):

f : Si → N
( ∑

i

N (Si)
)

(8)

—Normalization and max (NM):

f : Si → N
(

max
i

N (Si)
)

(9)

—Normalization and product (NP):

f : Si → N
( ∏

i

N (Si)
)

, (10)

where, in Equations (8), (9), and (10), i ∈ {s, t, a} or {st, a}; and N is a normalization
operator to normalize all attention maps to the same dynamic range, that is, [0, 1].
We mainly use NS as our fusion method because it is more intuitive. Moreover, the
NS method can achieve state-of-the-art performance, which is discussed in Section 4.4.
The performance of the other two methods are also compared in that section.

4. EXPERIMENTS AND RESULTS

4.1. Eye-tracking Experiments

4.1.1. Stimuli. Few audiovisual-attention databases are made available in the commu-
nity now. Coutrot and Guyader [2013] constructed an audiovisual-attention database,
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Table I. Main Specifications and Contents of Test Video Sequences

Video Resolution Frame No. of
Index sequence W×H rate fps frames Video content Audio content

V1 Speech1 1280×720 29.97 255 Three people’s talk One person’s speech
V2 Speech2 1280×720 29.97 240 Speaking Speaking
V3 Speech3 1280×720 29.97 243 Speaking Speaking
V4 Interview1 800×450 25 225 Interviewer and pedestrians Interviewer’s speech
V5 Interview2 1280×720 24 152 Interviewee and pedestrians Interviewee’s speech
V6 Basketball1 1280×720 23.98 193 Basketball dribble Basketball dribble
V7 Basketball2 1280×720 23.97 240 Basketball dribble Basketball dribble
V8 News1 1280×720 25 255 Two people’s news report One reporter’s speech
V9 News2 1280×720 25 125 Two people’s news report One reporter’s speech
V10 News3 640×356 29.97 308 News report Reporter’s speech
V11 News4 1280×720 25 125 Two people’s news report One reporter’s speech
V12 Conservation1 1024×576 25 145 Conservation One person’s speech
V13 Conservation2 1280×720 25 175 Conservation One person’s speech
V14 Conservation3 1280×720 29.97 265 Conservation One person’s speech
V15 Drummer1 1280×720 25 150 Drummer and crowd Drumbeat
V16 Drummer2 960×540 30 240 Drummer and pedestrians Drumbeat
V17 Soccer1 1280×720 30 180 Pop and tip Sound of pop and tip
V18 Soccer2 1280×720 29.97 150 Pop and tip Sound of pop and tip
V19 Singing1 1280×720 29.97 240 Singing Singing
V20 Singing2 1280×720 29.97 271 Singing Singing
V21 Tap1 960×540 29.97 241 Two tap dancers One dancer’s tap dancing
V22 Tap2 800×450 30 300 Dancing Dancing
V23 Tap3 1280×720 30 240 Tap dancer in the crowd The tap dancing sound
V24 Tap4 1280×720 25 200 Two tap dancers in the crowd The tap dancing sound
V25 Piano1 1280×720 30 300 Piano player and crowd Piano
V26 Piano2 1280×720 29.97 150 Piano player and crowd Piano
V27 Piano3 1280×720 29.97 301 Piano player and crowd Piano
V28 Dog1 1280×720 29.97 210 Dog’s running and barking Dog’s bark
V29 Dog2 1280×720 30 150 A dog is barking at a toy Dog’s bark
V30 Dog3 1280×720 30 210 A dog is barking at a toy Dog’s bark
V31 Bird 1280×720 29.97 150 Bird Twitter of the bird
V32 Dancers 1280×720 28.67 202 Two dancers The music rhythm
V33 Harp 1280×720 29.97 301 Harp player Sound of the harp
V34 Beat 1280×720 30 300 Instrumental beat Instrumental beat
V35 Squirrel 1280×720 30 210 Squirrel Sound of the squirrel
V36 Guitar1 640×360 23.98 156 Playing guitar Guitar sound
V37 Guitar2 640×360 25 126 Guitar player and pedestrians Guitar sound
V38 Guitar3 480×360 29.97 251 Guitar player and attendant Guitar sound
V39 Guitar4 1280×720 29.97 240 Guitar player and pedestrians Guitar sound
V40 Guitar5 1280×720 25 200 Guitar player and pedestrians Guitar sound
V41 Violin1 320×240 25 129 Playing violin Violin sound
V42 Violin2 1280×720 25 250 Playing violin in the crowd Violin sound
V43 Violin3 1280×960 23.98 190 Playing violin Violin sound
V44 Darbuka1 1280×720 29.97 180 Darbuka player and crowd Darbuka playing
V45 Darbuka2 720×720 25 200 Darbuka player and pedestrian Darbuka playing

but the database was originally built to investigate the mechanism affecting how sound
impacts eye movements. The presented scenes are too general, and are not applicable
in this work since our methods are mainly used in scenes in which the motion and
audio are highly correlated. In this article, we perform eye-tracking experiments with
45 test video sequences. Several video sequences have been used in Izadinia et al.
[2013] and Li et al. [2014]; the rest are gathered from YouTube. Both video sequences
and eye-tracking data will be publicly available. Main specifications of the collected
video sequences are listed in Table I. We also list the brief descriptions of both video
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Fig. 6. Thumbnails of all test video sequences. A total of 45 video sequences were used. From left to right,
from top to bottom: V1,V2,. . .,V45.

and audio contents in this table for better understanding of the video sequences. The
lengths of video sequences range from 5s to 10s. A total of 9564 frames are used in
our experiments. Sample frames of all test video sequences are illustrated in Figure 6.
From this figure, we can see that collected videos contain a variety of scenes, for exam-
ple, dancing, playing musical instruments, playing or kicking the ball, speaking, and
talking. All video sequences contain soundtracks, and most video sequences only con-
tain one dominant sound that is emitted by the main process of video sequences. Some
video sequences contain disturbed motion that emits no sound, such as pedestrians’
passing by and the motion of conversational partners.

4.1.2. Apparatus. We use Tobii T120 Eye Tracker to collect eye movement data. Tobii
T120 has a 17in screen, whose resolution is 1280 × 1024 pixels. It has an effective
tracking range of 50∼80cm. Subjects are seated around 60cm from the eye tracker. The
sampling rate is set to 120Hz.

4.1.3. Participants. A total of 16 inexperienced college students participated in our
experiments. Subjects were not familiar with the purpose of the experiments, and they
all had normal or corrected-to-normal vision. All subjects watched all 45 test videos.
Two subjects’ eye-movement data were abandoned because insufficient eye-movement
data was tracked.

4.1.4. Procedure and Test Conditions. We adopted a free-viewing approach in the tests.
Moreover, eye-tracking experiments were conducted with an audiovisual test condition.
Subjects were told to just watch the video sequences and listen to the soundtrack played
through the headset. We performed a 5-point calibration at the beginning of the tests.
After that, subjects looked at the center of the screen and the tests began. During
the tests, video sequences were linearly rescaled to fit the maximum resolution of the
screen, but we did not change the aspect ratio of video sequences. For example, a video
sequence with the resolution of 320×240 was spatially interpolated to the resolution of
1280×960. We adopted the bicubic interpolation method in the experiments. All video
sequences were played in a random order, and the presenting order for each subject
was also different. Between two video sequences, there was a gray-screen interval of
2s.
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Table II. Model Parameters

Category Parameter Value
Video segmentation Merging threshold 5

(pixel level)
Merging threshold 200
(hierarchical level)

Minimum segment size 100
No. of frames in a clip 15

No. of supervoxels About 25
Optical flow Regularization weight 0.012

Downsample ratio 0.5
Width of the coarsest level 40

No. of fixed-point iterations 7 (outer)
1 (inner)

No. of SOR iterations 30
Visual feature No. of top supervoxels 5 (velocity)

5 (acceleration)
Audio feature No. of MFCCs 10

No. of MFCC Ds 10
AV correlation Threshold 0.4

SD of the Gaussian kernel 10 (spatial)
5 (temporal)

Temporal attention SD of the Gaussian kernel 10

4.2. Implementation Details

In the implementation, all video sequences were analyzed at their original frame rate.
To reduce computation, we downsampled the spatial resolution of video sequences to
make them have a maximum width or height of 240 pixels without change of the video
sequences’ aspect ratio. In the final saliency evaluation stage, however, saliency maps
were linearly enlarged to the resolution in which the eye-movement data was tracked.
Before audio processing, the audio signal was framed to have the same number of
frames as the video sequence, and the framing windows were 50% overlapped Hamming
windows. The adopted video segmentation approach [Xu et al. 2012] is a hierarchical
method. We chose the desired level so that the final number of supervoxels was most
close to 25. More model implementation parameters can be found in Table II. Note that
parameters are mainly from third-party algorithms, like video segmentation [Xu et al.
2012] and optical flow estimating [Liu 2009], and we rarely tuned these parameters.

4.3. Evaluation Metrics

Similar to the study by Borji et al. [2013], we used 3 saliency evaluation metrics, but we
replaced the original area under the Receiver Operating Characteristic (ROC) curve
(AUC) with the shuffled version of AUC (sAUC) to wipe off the influence of center bias
[Zhang et al. 2008].

—sAUC: The saliency map acts as a binary classifier. Values greater than a threshold
were classified as fixated, while the rest were classified as nonfixated. Human eye
fixations were ground-truth fixated positions, whereas the same number of random
locations sampled uniformly from fixations of all other images were taken as non-
fixated positions. Then, the true-positive rate and the false-positive rate could be
calculated. As the threshold varied, the ROC curve was plotted. The area under the
ROC curve indicates how well saliency map predicts eye fixations.

—Linear Correlation Coefficient (CC): It simply calculates the 2D correlation coefficient
between the saliency map and fixation density map (FDM), for which the FDM is
generated by convolving the human eye-fixation map with a Gaussian kernel.
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Table III. Performance of Saliency Algorithms and Their Combination with Temporal and Audio-Attention Maps

sAUC CC NSS
Model S ST STA Sig S ST STA Sig S ST STA Sig

IT 0.6178 0.7003 0.7431 +1 0.3166 0.3758 0.4264 +1 1.264 1.556 1.805 +1
GBVS 0.6529 0.7165 0.7485 +1 0.3524 0.3971 0.4422 +1 1.454 1.666 1.886 +1

SR 0.6635 0.7244 0.7625 +1 0.2409 0.3389 0.4107 +1 1.008 1.436 1.765 +1
SUN 0.6037 0.7051 0.7526 +1 0.1661 0.3029 0.3878 +1 0.695 1.292 1.674 +1
PFT 0.6423 0.7141 0.7554 +1 0.2015 0.3265 0.4045 +1 0.850 1.385 1.740 +1

SMVJ 0.6665 0.7211 0.7505 +1 0.3690 0.4068 0.4472 +1 1.525 1.706 1.905 +1
Hou 0.5862 0.7072 0.7479 +1 0.1848 0.3343 0.4077 +1 0.845 1.458 1.784 +1
SeR 0.6281 0.7003 0.7475 +1 0.1982 0.2971 0.3766 +1 0.818 1.247 1.607 +1
Judd 0.6594 0.7236 0.7529 +1 0.3192 0.3815 0.4305 +1 1.351 1.630 1.859 +1
FT 0.5087 0.6666 0.7301 +1 0.0386 0.2609 0.3654 +1 0.156 1.109 1.583 +1
RC 0.5862 0.6836 0.7378 +1 0.2134 0.3260 0.3985 +1 0.847 1.363 1.704 +1

BMS 0.6875 0.7373 0.7626 +1 0.2684 0.3608 0.4203 +1 1.273 1.608 1.856 +1
CovSal 0.6207 0.7048 0.7426 +1 0.4019 0.4295 0.4612 +1 1.686 1.812 1.975 +1
HFT 0.6383 0.7080 0.7493 +1 0.3365 0.3852 0.4355 +1 1.404 1.625 1.865 +1
FES 0.6842 0.7372 0.7672 +1 0.2341 0.3331 0.4031 +1 1.003 1.427 1.742 +1

Mean 0.6297 0.7100 0.7500 +1 0.2561 0.3504 0.4145 +1 1.079 1.488 1.783 +1
PQFT - 0.6663 0.7416 +1 - 0.2603 0.3995 +1 - 1.116 1.746 +1
SeR - 0.5920 0.7186 +1 - 0.2267 0.3902 +1 - 0.968 1.706 +1

RWRV - 0.6246 0.7288 +1 - 0.2403 0.3833 +1 - 0.981 1.634 +1
Mean - 0.6276 0.7297 +1 - 0.2424 0.3910 +1 - 1.022 1.695 +1

∗S: Spatial; ST: Spatiotemporal; STA: Spatiotemporal-Audio. We highlight three top-performed models in
each column. Sig: statistical significance comparison between STA and ST; “+1” denotes STA is statistically
better than ST. Note that all models perform significantly better after incorporating audio attention.

—Normalized Scanpath Saliency (NSS): The mean value of the normalized saliency
map at all fixation points is calculated as NSS [Peters et al. 2005], for which the
normalized saliency map have zero mean and unit standard deviation.

For all 3 metrics, greater values denote better consistency between the predicted
saliency map and the ground-truth eye-tracking data. We used the evaluation code
downloaded from Bylinskii et al. [2012].

4.4. Results and Analysis I: Effectiveness of Incorporating Audio Cues

In this section, we demonstrate the effectiveness of incorporating audio cues based
on the gathered video sequences and eye-movement data. For spatial saliency models,
three types of attention maps were evaluated: Ss, f (Ss, St), and f (Ss, St, Sa). For spa-
tiotemporal models, two kinds were evaluated: Sst and f (Sst, Sa). As already defined,
Ss, St, Sst, Sa are spatial-, temporal-, spatiotemporal-, and audio-attention maps, re-
spectively; f is the fusion function. In this article, saliency maps calculated from 15
image algorithms and 3 video algorithms act as Ss and Sst, respectively.

Experiment results are listed in Table III, in which S, ST, and STA denote the perfor-
mance of spatial (Ss)-, spatiotemporal ( f (Ss, St) or Sst)- and audiovisual ( f (Ss, St, Sa)
or f (Sst, Sa))-attention maps, respectively. In this table, listed results are average per-
formance of all video frames. Note that we only list the results fused by the NS method.
Other fusion methods are compared later. If only considering spatial information, some
recently proposed models (such as BMS [Zhang and Sclaroff 2013], CovSal [Erdem and
Erdem 2013], and FES [Gu et al. 2015a]), and several classical models incorporating
high-level factors (such as GBVS [Harel et al. 2006], SMVJ [Cerf et al. 2008], and Judd
[Judd et al. 2009]) generally perform better. FT [Achanta et al. 2009] and RC [Cheng
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Table IV. Comparison of Different Fusion Methods

Fusion method f NS NM NP
Ss 0.6297

sAUC f (Ss, St) 0.7100 0.6886 0.6820
f (Ss, St, Sa) 0.7500 0.7172 0.6747

Ss 0.2561
CC f (Ss, St) 0.3504 0.3096 0.3535

f (Ss, St, Sa) 0.4145 0.3390 0.3924
Ss 1.0786

NSS f (Ss, St) 1.4878 1.3123 1.5839
f (Ss, St, Sa) 1.7833 1.4355 1.9141

et al. 2011] have lower performances. It is expected since they are originally designed
to detect salient objects.

For most tested saliency models, not surprisingly, f (Ss, St) performs better than Ss
since motion is an important incentive for visual attention. f (Ss, St, Sa) (or f (Sst, Sa))
performs even better than f (Ss, St) (or Sst), however. It is a quantitative verification of
our framework. Using p(·) to denote the performance of the saliency map, the following
inequality holds:

p( f (Ss, St, Sa)) >p( f (Ss, St)) >p(Ss) or
p( f (Sst, Sa)) >p( f (Sst)).

(11)

The performance enhancement exists no matter what evaluation metrics are used,
that is, p(·) can be sAUC, CC, or NSS scores. Significance tests, one-way analysis on
variance (ANOVA) [Snecdecor and Cochran 1989], are performed to verify if perfor-
mance promotion is significant. Results show that all models improved significantly
(p < 0.001) after combining with audio-attention maps. Thus, we can reach the con-
clusion that audio has some influence on visual attention and we can promote human
fixation prediction by incorporating audio cues.

Figure 7 is an intuitive illustration of related saliency maps. For each sample video
sequence, frame image, fixation density map and different kinds of attention maps
mentioned earlier are shown. Six video sequences are selected as examples in this
figure. In the selected video sequences, Sa shows good correlation with the FDM, and
the final saliency map becomes better after incorporating Sa. Specifically, taking V13
as an example, it is a typical case that audio information matters. In this example,
the left talking face is a strong attractor to visual attention, but it is not easy to be
detected by purely visual analysis if no other high-level cognitive factors are considered.
Through multimodal analysis, we can locate the talking face, thus f (Ss, St, Sa) works
better than Ss and f (Ss, St). Other video sequences behave similarly, which can be seen
from Figure 7. Purely spatial and temporal analysis may not predict visual attention
perfectly. Through audiovisual analysis, howeve, we can locate and emphasize the
sound-emitting regions that draw great visual attention, thus providing better results.

Different fusion methods are also compared. Table IV lists the results, which are the
average performance of all video frames and all original saliency algorithms. Fusion
methods described in Section 3.3 are tested and listed in this table. Note that Ss does
not require any fusion process; we include it here for the convenience of performance
comparison. According to Table IV, no matter under what kind of evaluation metrics
and using which fusion methods, inequality Equation (11) generally holds. Since the
NS method can achieve state-of-the-art performance, we mainly analyze the results
derived by the NS fusion method in this article.
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Fig. 7. Examples of related saliency maps. One column corresponds to one video sequence, and the first
column lists the content names of corresponding rows. Six video sequences are chosen as examples in this
figure. For each video sequence, example frame, FDM, motion map, audio-attention map and saliency maps
computed and fused from several original algorithms are illustrated.
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Table V. Performance Gain of Test Video Sequences

Video Gt Gta Ga Video Gt Gta Ga Video Gt Gta Ga

V1 48.45% 75.96% 17.47% V16 31.41% 41.06% 6.67% V31 9.46% 18.13% 7.66%
V2 47.71% 70.86% 14.78% V17 122.02% 106.98% −5.85% V32 60.75% 78.26% 9.72%
V3 9.84% −2.92% −11.30% V18 31.13% 54.44% 16.77% V33 6.08% 0.24% −5.51%
V4 36.99% 94.67% 40.26% V19 73.69% 97.36% 12.33% V34 46.86% 47.18% −0.05%
V5 82.13% 199.90% 57.33% V20 27.14% 40.39% 10.07% V35 −3.75% 46.65% 52.06%
V6 28.68% 41.99% 10.02% V21 75.45% 146.67% 38.26% V36 13.67% 22.10% 7.40%
V7 −7.27% −1.52% 6.28% V22 16.60% 23.55% 5.80% V37 −9.33% 11.73% 24.37%
V8 93.76% 250.13% 72.54% V23 18.30% 31.64% 11.13% V38 47.16% 77.27% 18.70%
V9 49.70% 91.08% 25.47% V24 73.52% 80.76% 3.23% V39 75.62% 140.40% 32.91%
V10 123.66% 172.86% 19.07% V25 109.61% 224.64% 49.09% V40 1.55% 21.47% 19.62%
V11 46.82% −10.24% −37.18% V26 16.67% 52.48% 30.04% V41 −9.16% −6.02% 3.52%
V12 80.84% 125.02% 23.60% V27 11.95% 25.32% 11.90% V42 5.67% 35.18% 27.82%
V13 −8.36% 49.86% 65.79% V28 −9.31% 7.90% 20.09% V43 −3.05% 4.97% 8.35%
V14 108.36% 224.24% 49.56% V29 26.89% 44.78% 13.33% V44 17.18% −11.75% −23.78%
V15 61.78% 53.14% −4.62% V30 38.62% 57.51% 12.80% V45 46.54% 78.70% 20.26%

4.5. Results and Analysis II: Mechanism of the Promotion Effect of Multimodal Analysis

In this section, we analyze the performance gain caused by the added audio infor-
mation for all test video sequences. We provide some hints regarding when and how
audiovisual analysis benefits visual-attention prediction. In detail, using G to denote
the performance gain, we analyze the following results of all test video sequences:

—Performance gained from motion information:

Gt = p( f (Ss, St)) − p(Ss)
p(Ss)

(12)

—Performance gained from motion and audio information:

Gta = p( f (Ss, St, Sa)) − p(Ss)
p(Ss)

(13)

—Performance gained from audio information:

Ga = p( f (Ss, St, Sa)) − p( f (Ss, St))
p( f (Ss, St))

, (14)

where p(·) indicates the performance of saliency map.

Table V lists the results. It should be noted that the performance gain G in this
table is averaged over all 3 evaluation metrics. Moreover, we consider all 15 image
saliency algorithms, and what is listed in Table V are average results. In addition to
the quantitative results, we provide some illustrations of example attention maps in
Figure 8, which is a supplement to Figure 7. These two figures together provide at least
one example frame image, corresponding FDM, spatial-, temporal-, audio-, and final
audiovisual-attention maps for each test video sequence.

The effectiveness of motion information is evident from Gt. Performance of most
video sequences improves substantially except for several video sequences. As shown
in Figure 8, primary motion may not represent the focus of visual attention exactly in
these video sequences (V7, V13, V37, V41). It may also be caused by camera motion
(V28, V35, V43). As is for audio, if Gta > Gt or Ga > 0, audio information helps. Through
analysis, we find that audiovisual analysis contributes much to fixation prediction
generally in the following scenarios:
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Fig. 8. Saliency maps of videos except what has been shown in Figure 7. For each video, 6 images are shown
(from top to bottom): frame image, FDM, Ss, St, Sa, f (Ss, St, Sa). Ss are computed by the IT method [Itti
et al. 1998] in this figure. The first row (frame image, from left to right): V2, V3, V4, V6, V7, V8, V9, V10.
The seventh row: V11, V12, V14, V15, V16, V17, V19, V20. The thirteen row: V22, V23, V24, V25, V26, V27,
V28, V29.
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Fig. 8. (continued) Saliency maps of videos except what has been shown in Figure 7. The first row: V30,
V31, V32, V33, V34, V35, V36, V38. The thirteenth row: V39, V40, V41, V42, V43, V44, V45.

—There are several salient objects or targets in the scene, but only one or part of
them are emitting sound. In such circumstances, subjects may notice all salient
targets. Since one target is generating sound, however, this target is relatively more
salient compared with others. Thus, subjects pay more attention to the sound source.
Through multimodal analysis, we can locate and emphasize the sound source, thus
providing better performance. V1, V8, V9, V12, V13, V14, V21, V23, V37, and V38
are typical scenes of this kind. For example, as already analyzed in Section 4.4, Sa
helps a lot in V13.

—In the video sequence, only one salient target exists, and is moving and generating
sound. There is some disturbed motion, however, especially in the background re-
gions, or the video sequences may contain camera motion. In this kind of scene, the
moving–sound-generating object is both visually and aurally salient. Subjects will
focus more on the moving–sound-generating object and rarely pay attention to such
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kinds of disturbed motion. The traditional video saliency model suffers from these
motion, however. Through sound source localization, we can reduce the influence
of disturbed motion. V4, V5, V16, V22, V24, V25, V26, V27, V28, V29, V30, V35,
V39, V40, V42, V43, and V45 are representative video sequences. Taking V4 as an
instance, Sa eliminates a lot of irrelevant motion, as shown in Figure 8. Thus, the
final fused map works better.

—Similar to the second case, one main process exists, but there is no background
motion. Audiovisual analysis will help to concentrate more on the sound-emitting
region, which is always the focus of attention. V2, V6, V7, V10, V18, V19, V20, V31,
V32, V36, and V41 all belong to this kind. For example, in V10, V19, and V20, we
can locate the speaking or singing faces accurately. In these video sequences, the
face regions are also areas with large movement. In other words, the sound-emitting
regions and motion regions highly overlap. The enhancement effect of the audio-
attention map is also very useful, however.

Admittedly, audiovisual analysis may not always be helpful in fixation prediction.
Sometimes, the sound-emitting regions are not as attractive compared with other posi-
tions, in which case, highlighting the sound sources is useless. Also, the sound-source
localization may provide results that are not as good. For instance, in V3, V11, and
V44, f (Ss, St, Sa) performs worse than f (Ss, St). Thus, an accurate and robust sound
source localization method is also indispensable. However, it is worth mentioning that
the audio-attention map-generating process can be interpreted as a procedure that
picks out and highlights a part of or the whole motion region. We do not need to worry
that the audio-attention map will do much harm to the final saliency map since the
localized regions generally have large movement. An interesting phenomenon is that
the Ga of video sequences belonging to the first and second case are generally greater
than that of the third case. As shown in Table V, Ga of V4, V5, V8, V13, V14, V21,
V25, V26, V35, V39, and V42 are greater than the average level. This is reasonable
because the motion picking and highlighting effect in video sequences of the the first
and second case is more significant.

5. CONCLUSION

Audio information is an indispensable part of multimedia content, but it is rarely con-
sidered in visual-attention models. Psychological findings show that the sound source
is a strong incentive for visual attention. We apply audio information to human eye
fixation prediction. Through audiovisual correlation analysis, we locate the moving–
sound-generating objects, then generate an audio-attention map for each frame. The
audio-attention maps are further fused with conventional visual-attention maps. The
efficiency of generated audiovisual-saliency maps is verified with gathered video se-
quences and eye-movement data. Moreover, experiment results show that audio-
attention map generating is a process of selecting and emphasizing regions whose
motion is highly correlated with the audio. Thus, our approach is extremely useful in
scenes containing moving–sound-generating objects and other disturbed motion that
has no relation with the audio. Of course, incorporating audio information may not
always contribute to eye-fixation prediction because of factors such as the accuracy of
moving–sound-generating object localization and the attractiveness of sound sources.
Thus, more robust and accurate sound-localization methods and comprehensive inves-
tigation of audio’s role in visual-attention prediction are directions of future efforts.
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